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Breadth-first search

BFS(G , S)

for all u ∈ V :

dist[u]←∞
dist[S ]← 0

Q ← {S} {queue containing just S}
while Q is not empty:

u ← Dequeue(Q)
for all (u, v) ∈ E:
if dist[v ] =∞:

Enqueue(Q, v)
dist[v ]← dist[u] + 1



Running time
Lemma

The running time of breadth-�rst search is

O(|E | + |V |).

Proof

Each vertex is enqueued at most once

Each edge is examined either once (for

directed graphs) or twice (for undirected

graphs)
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Reachability
Definition

Node u is reachable from node S if there is a

path from S to u

Lemma

Reachable nodes are discovered at some

point, so they get a �nite distance estimate

from the source. Unreachable nodes are not

discovered at any point, and the distance to

them stays in�nite.
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Order Lemma

Lemma

By the time node u at distance d from S is

dequeued, all the nodes at distance at most

d have already been discovered (enqueued).



Order Lemma Proof
u

d

v

d ′

Consider the �rst time the order was broken

d ′ ≤ d ⇒ d ′ − 1 ≤ d − 1, so v ′ was

discovered before u′ was dequeued
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Correct distances

Lemma

When node u is discovered (enqueued),

dist[u] is assigned exactly d(S , u).
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nodes at distance ≤ k from S → prove
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So d(S , u) = k , and

dist[v ]← dist[u] + 1 = k + 1
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Queue property

Queue: d d d . . . d d d + 1d + 1. . . d + 1

Lemma

At any moment, if the �rst node in the

queue is at distance d from S , then all the

nodes in the queue are either at distance d

from S or at distance d + 1 from S . All the

nodes in the queue at distance d go before

(if any) all the nodes at distance d + 1.



Queue property
Proof

All nodes at distance d were enqueued

before �rst such node is dequeued, so

they go before nodes at distance d + 1

Nodes at distance d − 1 were enqueued

before nodes at d , so they are not in the

queue anymore

Nodes at distance > d + 1 will be

discovered when all d are gone
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Lemma

Shortest-path tree is indeed a tree, i.e. it

doesn't contain cycles (it is a connected

component by construction).



Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

d

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

d

≤ d − 1

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

d

≤ d − 1

≤ d − 2

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

d

≤ d − 1

≤ d − 2

≤ d − 3

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

d

≤ d − 1

≤ d − 2

≤ d − 3
≤ d − 4

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Proof

A

B

C

DE

d

≤ d − 1

≤ d − 2

≤ d − 3
≤ d − 4

≤ d − 5

Only one outgoing edge from each node

Distance to S decreases after going by

edge



Constructing shortest-path tree

BFS(G , S)

for all u ∈ V :

dist[u]←∞, prev[u]← nil

dist[S ]← 0

Q ← {S} {queue containing just S}
while Q is not empty:

u ← Dequeue(Q)
for all (u, v) ∈ E:
if dist[v ] =∞:

Enqueue(Q, v)
dist[v ]← dist[u] + 1, prev[v ]← u



Reconstructing Shortest Path

ReconstructPath(S , u, prev)

result ← empty

while u ̸= S:

result.append(u)

u ← prev[u]

return Reverse(result)



Conclusion

Can �nd the minimum number of �ight

segments to get from one city to another

Can reconstruct the optimal path

Can build the tree of shortest paths

from one origin

Works in O(|E | + |V |)
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